Framework for Real-Time Event Detection using Multiple Social Media Sources

Date

2017-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Information about events happening in the real world are generated online on social media in real-time. There is substantial research done to detect these events using information posted on websites like Twitter, Tumblr, and Instagram. The information posted depends on the type of platform the website relies upon, such as short messages, pictures, and long form articles. In this paper, we extend an existing real-time event detection at onset approach to include multiple websites. We present three different approaches to merging information from two different social media sources. We also analyze the strengths and weaknesses of these approaches. We validate the detected events using newswire data that is collected during the same time period. Our results show that including multiple sources increases the number of detected events and also increase the quality of detected events. \

Description

Keywords

Event Detection, Social media, Heterogeneous Data Sources

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 50th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.