PyProD: A Machine Learning-Friendly Platform for Protection Analytics in Distribution Systems

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper introduces PyProD, a Python-based machine learning (ML)-compatible test-bed for evaluating the efficacy of protection schemes in electric distribution grids. This testbed is designed to bridge the gap between conventional power distribution grid analysis and growing capability of ML-based decision making algorithms, in particular in the context of protection system design and configuration. PyProD is shown to be capable of facilitating efficient design and evaluation of ML-based decision making algorithms for protection devices in the future electric distribution grid, in which many distributed energy resources and pro-sumers permeate the system.

Description

Keywords

Resilient Networks, machine learning, power system protection, power systems, simulation testbed

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.