Predicting Adolescent Suicide Risk From Cellphone Usage Data and Self-Report Assessments

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3656

Ending Page

Alternative Title

Abstract

As suicide is a leading cause of adolescent death, innovative evaluation of imminent suicide risk factors is needed. This study followed high-risk adolescents who presented with recent suicidal thoughts and behaviors (STB) for six months. They were digitally monitored and periodically observed during in-clinic visits. We aimed to classify their STB levels and identify severe cases based on two types of digital monitoring: (1) weekly self-reported questionnaires by patients and (2) and continuously collected cellphone use data. We present a novel approach for utilizing the immense amounts of unlabeled cellular logs in a supervised classification problem. Satisfying prediction results from both data types showed the feasibility of using digital monitoring for STB prediction. Such a capability may enrich periodic clinical assessments with frequent digital follow-ups and raise awareness whenever necessary.

Description

Keywords

Personal Health Management with Digital Solutions, abnormal behavior detection, digital monitoring., machine learning, suicide prediction

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.