Almost completely decomposable groups with two critical types and their endomorphism rings

Date

1992

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

An almost completely decomposable group with two critical types is a direct sum of rank-one groups and indecomposable rank-two groups. A complete set of near isomorphism invariants for an acd group with two critical types is the isomorphism class of the regulator and the isomorphism class of the regulator quotient; with one additional invariant, namely an element of a certain quotient group of (Ζ/m Ζ)^x , a complete set of isomorphism invariants for an acd group with two critical types is obtained. Finally, the endomorphism ring of an acd group with two critical types is computed and the resulting structure is used to give an example of two nearly isomorphic groups with non-isomorphic endomorphism rings.

Description

Thesis (Ph. D.)--University of Hawaii at Manoa, 1992.
Includes bibliographical references (leaves 48-49)
Microfiche.
iv, 49 leaves, bound 29 cm

Keywords

Citation

Extent

Format

Geographic Location

Time Period

Related To

Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Mathematics; no. 2775

Related To (URI)

Table of Contents

Rights

All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.