A Novel Approach to Predict the Helpfulness of Online Reviews

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Online reviews help consumers reduce uncertainty and risks faced in purchase decision making by providing information about products and services. However, the overwhelming amount of data continually being produced in online review platforms introduce a challenge for customers to read and judge the reviews. This research addresses the problem of misleading and overloaded information by developing a novel approach to predict the helpfulness of online reviews. The proposed approach in this study, first, clusters reviews using reviewer-related, and temporal factors. It then uses review-related factors to predict online review helpfulness in each cluster. Using a sample of Amazon.com reviews, the empirical findings offer strong support to the proposed approach and show its superior predictions of review helpfulness compared to earlier approaches. The outcomes of this study help customers in online shopping and assist online retailers in reducing information overload to improve their customers’ experience.

Description

Keywords

Social Media Management in Big Data Era, analytics, big data, consumer decision making, helpfulness, online reviews, sentiment analysis

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.