Data-Driven Chance-Constrained Design of Voltage Droop Control for Distribution Networks

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper addresses the design of local control methods for voltage control in distribution networks with high levels of distributed energy resources (DERs). The designed control methods modulate the active and reactive power output of DERs proportional to the deviation of the local measured voltage magnitudes from a reference voltage, which is referred to as droop control; thus, the design focuses on determining the droop characteristics that satisfy network-wide voltage magnitude constraints. The uncertainty and variability of DERs renders the design of optimal droop controls very challenging; hence, this paper proposes chance constraints to limit the risk from intermittent DERs by designing droop control coefficients that guarantee the satisfaction of network operational constraints with a specific probability. In addition, the proposed approach relies entirely on historical data rather than assuming knowledge of the probability distributions that characterize the uncertainty of DERs. The efficacy of the proposed method is demonstrated on a 37-bus distribution feeder.

Description

Keywords

Monitoring, Control, and Protection, data-driven, stochastic optimization, voltage control

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.