Reviewing the Need for Explainable Artificial Intelligence (xAI)
Files
Date
2021-01-05
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
1284
Ending Page
Alternative Title
Abstract
The diffusion of artificial intelligence (AI) applications in organizations and society has fueled research on explaining AI decisions. The explainable AI (xAI) field is rapidly expanding with numerous ways of extracting information and visualizing the output of AI technologies (e.g. deep neural networks). Yet, we have a limited understanding of how xAI research addresses the need for explainable AI. We conduct a systematic review of xAI literature on the topic and identify four thematic debates central to how xAI addresses the black-box problem. Based on this critical analysis of the xAI scholarship we synthesize the findings into a future research agenda to further the xAI body of knowledge.
Description
Keywords
Explainable Artificial Intelligence (XAI), explainable ai, machine learning, socio-technical, stakeholders, xai
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.