False Positives in Credit Card Fraud Detection: Measurement and Mitigation

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Credit Card Fraud Detection is a classification problem where different types of classification errors cause different costs. Previous works quantified the financial impact of data-driven fraud detection classifiers using a cost-matrix based evaluation approach, however, none of them considered the significant financial impact of false declines. Analysts reported that fraud prediction in e-commerce still has to deal with false positive rates of 30-70%, and many cardholders reduce card usage after being wrongly declined. In our paper, we propose a new method for assessing the cost of false declines and evaluate several state-of-the-art fraud detection classifiers using this method. Further, we investigate the effectiveness of ensemble learning as previous work supposed that a combination of diverse, individual classifiers can improve performance. Our results show that cost-based evaluation yields valuable insights for practitioners and that our ensemble learning strategy indeed cuts fraud cost by almost 30%.

Description

Keywords

Fraud Detection Using Machine Learning, cost-sensitive learning, credit card fraud detection, ensemble learning, false declines, false positive

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.