Generalized Blockmodeling of Multi-Valued Networks

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This research presents an extension to generalized blockmodeling where there are more than two types of objects to be clustered based on valued network data. We use the ideas in homogeneity blockmodeling to develop an optimization model to perform the clustering of the objects and the resulting partitioning of the ties so as to minimize the inconsistency of an empirical block with an ideal block. The ideal block types used in this modeling are null (all zeros), complete (all ones) and valued. Two case studies are presented: the Southern Women dataset and a larger example using a subset of the IMDb movie dataset.

Description

Keywords

Data Analytics, Data Mining and Machine Learning for Social Media, blockmodeling, generalized blockmodeling, valued network, clustering

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.