Classifying Vaccine Misinformation in Online Social Media Videos using Natural Language Processing and Machine Learning
Files
Date
2024-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3847
Ending Page
Alternative Title
Abstract
The spread of information through online social media videos is one of the most popular ways to share and obtain information, while at the same time the spread of misinformation across these same social spaces has become a significant concern affecting human well-being. Being able to detect this misinformation before it spreads is becoming more and more desirable for many social media platforms. This research focuses on exploring the accuracy of detecting misinformation across two social media platforms, YouTube and BitChute. This involves the classification of video data into two types: genuine information or misinformation. More specifically, this research generates additional metadata embedded within online videos related to the COVID-19 vaccination. Using natural language processing (NLP) we extract medical subject headings (MeSH) terms from video transcripts and classify videos using four machine learning techniques including naïve Bayes, random forest, support vector machine, and logistic regression. Implementation of each classifier is presented, and the accuracy of each technique is compared and discussed.
Description
Keywords
Socia Media and Healthcare Technology, machine learning, misinformation detection, natural language processing, sentiment analysis
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 57th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.