Road Condition Estimation Based on Heterogeneous Extended Floating Car Data

Date

2017-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Road condition estimation based on Extended Floating Car Data (XFCD) from smart devices allows for determining given quality indicators like the international roughness index (IRI). Such approaches currently face the challenge to utilize measurements from heterogeneous sources. This paper investigates how a statistical learning based self-calibration overcomes individual sensor characteristics. We investigate how well the approach handles variations in the sensing frequency. Since the self-calibration approach requires the training of individual models for each participant, it is examined how a reduction of the amount of data sent to the backend system for training purposes affects the model performance. We show that reducing the amount of data by approximately 50 % does not reduce the models’ performance. Likewise, we observe that the approach can handle sensing frequencies up to 25 Hz without a performance reduction compared to the baseline scenario with 50 Hz.

Description

Keywords

International Roughness Index, Participatory Sensing, Road Roughness, Service Analytics, Statistical Learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 50th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.