The Drone-Assisted Traveling Salesman Problem with Robot Stations

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

In this paper, we study the Drone-Assisted Traveling Salesman Problem with Robot Stations (TSP-D-RS). Specifically, we assume that there is a single truck that is equipped with a drone, and one or more potential sites of stations that might accommodate some robots. The TSP-D-RS asks for a valid route of the truck as well as feasible utilization of the drone and robots, such that all customers are served and minimal delivery time (makespan) or cost is accomplished. We provide a Mixed Integer Linear Programming formulation of the problem and perform a detailed numerical study. Through our numerical results, it is revealed that our formulation can be effectively addressed by a state-of-the-art solver. In addition, we demonstrate that optimizing the makespan coincides with reduced costs. In contrast, optimizing the operational costs might increase the makespan significantly. Furthermore, depending on the objective function, the operational utilization of the vehicles differs.

Description

Keywords

Intelligent Decision Support and Big Data for Logistics and Supply Chain Management, drones, last-mile delivery, logistics, micro-depot, traveling salesman problem

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.