Generating Rental Data for Car Sharing Relocation Simulations on the Example of Station-Based One-Way Car Sharing

Date

2017-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Developing sophisticated car sharing simulations is a major task to improve car sharing as a sustainable means of transportation, because new \ algorithms for enhancing car sharing efficiency are formulated using them. \ \ Simulations rely on input data, which is often gathered in car sharing systems or artificially generated. Real-world data is often incomplete and biased while artificial data is mostly generated based on initial assumptions. Therefore, developing new ways for generating testing data is an important task for future research. \ \ In this paper, we propose a new approach for generating car sharing data for relocation simulations by utilizing machine learning. Based on real-world data, we could show that a combined methods approach consisting of a Gaussian Mixture Model and two classification trees can generate appropriate artificial testing data.

Description

Keywords

car sharing, data generator, shared vehicle services, simulation, vehicle relocation

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 50th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.