Stakeholder-dependent views on biases of human- and machine-based judging systems

Date
2021-01-05
Authors
Mazurova, Elena
Penttinen, Esko
Salovaara, Antti
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
6327
Ending Page
Alternative Title
Abstract
Motivated by recent controversy over biases associated with algorithmic decision-making, we embarked on studying various stakeholders’ perceptions related to potential biases in verdicts from human-based and algorithm-based judging. In an empirical study conducted in the domain of gymnastics judging, we found that, while our informants viewed both human- and AI-based judging systems as being subject to biases (of different types), they were quite welcoming of a shift from human-based judging to machine-based judging. Our findings show that the athletes trusted strongly in unknown, “magic” capabilities of AI, thought to be more objective and impartial. This, in turn, encouraged potential acceptance of new technology. While the gymnasts saw AI-based systems in a positive light, judges demonstrated less favorable perceptions overall and less acceptance of AI technology, ex¬pressing concern about possible challenges of AI.
Description
Keywords
Promises and Perils of Artificial Intelligence and Machine Learning: Disruption, Adoption, Dehumanisation, Governance, Risk, and Compliance, bias, case study, gymnastics, human-based judging, machine learning
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.