Understanding the Effect of Task Descriptions on User Participation in Crowdsourcing Contests: A Linguistic Style Perspective

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Many employers are struggling with how to deliver attractive tasks on crowdsourcing platforms, where users can be effectively integrated into a company’s tasks. In this study, the linguistic style of crowdsourcing task descriptions is investigated, and an analysis is conducted on how such linguistic styles are related to a task description’s success in attracting participants. Based on uncertainty reduction theory as well as source credibility theory, an empirical analysis of 2,014 designing contests demonstrates that certain linguistic styles will reduce the uncertainty perceived by crowdsourcing solvers and increase employers’ credibility, generating positive effects on participation. It is also found that these observed effects are moderated by the magnitude of the rewards offered for completing crowdsourcing tasks. The results of this study inform the theories concerned on crowdsourcing participation, linguistics, as well as psychological processes, while offering the industry insight on how to describe their own crowdsourcing tasks better.

Description

Keywords

Creativity: Research and Practice, Collaboration Systems and Technologies, Crowdsourcing participation, Linguistic style, Source credibility, Task description, Uncertainty reduction

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.