Topic Modeling and Transfer Learning for Automated Surveillance of Injury Reports in Consumer Product Reviews

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Many modern firms and interest groups are tasked with the challenge of monitoring the status and performance of a bevy of distinct products. As online user-generated content has increased in volume, new unstructured data sources are available for mining unique insights. Reports of injuries arising as a result of product usage are particularly concerning. In this paper, we utilize complimentary approaches to address this problem. We analyze two novel datasets; first, a government-maintained dataset of hazard and injury reports and second, a large dataset of cross-industry consumer product reviews manually coded for the presence of hazard and injury reports. We apply an unsupervised topic modeling approach to characterize the hazard and injury reports detected. Then, we implement a supervised transfer learning technique, using information obtained from the government-maintained dataset to detect hazard and injury reports in online reviews. Our results offer improved surveillance for monitoring hazards across multiple industries.

Description

Keywords

Data, Text, and Web Mining for Business Analytics, business intelligence, safety, text mining, topic modeling, transfer learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.