Improving Support Ticket Systems Using Machine Learning: A Literature Review

Date
2022-01-04
Authors
Fuchs, Simon
Drieschner, Clemens
Wittges, Holger
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Processing customer support requests via a support ticket system is a key-element for companies to provide support to their customers in an organized and professional way. However, distributing and processing such tickets is much work, increasing the cost for the support providing company and stretching the resolution time. The advancing potential of Machine Learning has led to the goal of automating those support ticket systems. Against this background, we conducted a Literature Review aiming at determining the present state-of-the-art technology in the field of automated support ticket systems. We provide an overview about present trends and topics discussed in this field. During the Literature Review, we found creating an automated incident management tool being the majority topic in the field followed by request escalation and customer sentiment prediction and identified Random Forrest and Support Vector Machine as best performing algorithms for classification in the field.
Description
Keywords
Service Analytics, automating, literature review, machine learning, service desk, support ticket systems
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.