When are Decentralized Infrastructure Networks Preferable to Centralized Ones?
Date
2017-01-04
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Many infrastructure networks, such as power, water, and natural gas systems, have similar properties governing flows. However, these systems have distinctly different sizes and topological structures. This paper seeks to understand how these different features can emerge from relatively simple design principles. Specifically, we work to understand the conditions under which it is optimal to build small decentralized network infrastructures, such as a microgrid, rather than centralized ones, such as a large high-voltage power system. While our method is simple it is useful in explaining why sometimes, but not always, it is economical to build large, interconnected networks and in other cases it is preferable to use smaller, distributed systems. The results indicate that there is not a single set of infrastructure cost conditions that cause a transition from centralized networks being optimal, to decentralized architectures. Instead, as capital costs increase network sizes decrease gradually, according to a power-law. And, as the value of reliability increases, network sizes increase abruptly---there is a threshold at which large, highly interconnected networks are preferable to decentralized ones.
Description
Keywords
Infrastructure Systems, Power Systems, Network Science, Optimization
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 50th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.