Query Generation as Result Aggregation for Knowledge Representation
Date
2017-01-04
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Knowledge representations have greatly enhanced the fundamental human problem of information search, profoundly changing representations of queries and database information for various retrieval tasks. Despite new technologies, little thought has been given in the field of query recommendation – recommending keyword queries to end users – to a holistic approach that recommends constructed queries from relevant snippets of information; pre-existing queries are used instead. Can we instead determine relevant information a user should see and aggregate it into a query? We construct a general framework leveraging various retrieval architectures to aggregate relevant information into a natural language query for recommendation. We test this framework in text retrieval, aggregating text snippets and comparing output queries to user generated queries. We show that an algorithm can generate queries more closely resembling the original and give effective retrieval results. Our simple approach shows promise for also leveraging knowledge structures to generate effective query recommendations.
Description
Keywords
query recommendation, knowledge systems, information retrieval, Web search, query
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 50th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.