Multi-National Topics Maps for Parliamentary Debate Analysis

Date
2022-01-04
Authors
Schaal, Markus
Davis, Enno
Mueller, Roland M.
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
In recent years, automated political text processing became an indispensable requirement for providing automatic access to political debate. During the Covid-19 worldwide pandemic, this need became visible not only in social sciences but also in public opinion. We provide a path to operationalize this need in a multi-lingual topic-oriented manner. Using a publicly available data set consisting of parliamentary speeches, we create a novel process pipeline to identify a good reference model and to link national topics to the cross-national topics. We use design science research to create this process pipeline as an artifact.
Description
Keywords
Data Analytics, Data Mining and Machine Learning for Social Media, cross-country, latent dirichlet allocation, multi-lingual, parliamentary speech, probabilistic topic modelling
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.