Whetting the SWORD: Detecting Workarounds by Using Active Learning and Logistic Regression

Date

2024-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3687

Ending Page

Alternative Title

Abstract

In many organizations, especially in healthcare, workers may work around prescribed procedures. Detecting these workarounds can give insights into difficulties concerning the procedures, which in turn can be used to improve them. Previous studies have shown that workarounds may be discovered from an event log using a set of predefined patterns such as the duration of a trace or the number of resources involved in one. However, domain experts may find it difficult to evaluate and monitor results if there are multiple patterns that indicate workarounds. Training a model that merges the features is often difficult because there are no available datasets covering workarounds. Labeling traces generally requires a lot of time from domain experts. In addition, this would have to be repeated for every new domain, company, or even department since the types of workarounds that occur may differ strongly between them. In this work, we propose to combine the features using a Logistic Regression model and train through Active Learning. In a case study at a hospital, we find that after training the model on only 10 to 15 traces, it stabilizes with an approximate F1 score of .75. This shows that we create and train a model that can detect workarounds well without requiring a large amount of labeled data or a lot of time from a domain expert.

Description

Keywords

Process Mining in Healthcare, active learning, event log, logistic regression, process mining, workarounds

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 57th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.