Learning a Local Trading Strategy: Deep Reinforcement Learning for Grid-scale Renewable Energy Integration

Date

2025-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3147

Ending Page

Alternative Title

Abstract

Variable renewable generation increases the challenge of balancing power supply and demand. Grid-scale batteries co-located with generation can help mitigate this misalignment. This paper explores the use of reinforcement learning (RL) for operating grid-scale batteries co-located with solar power. Our results show RL achieves an average of 61% (and up to 96%) of the approximate theoretical optimal (non-causal) operation, outperforming advanced control methods on average. Our findings suggest RL may be preferred when future signals are hard to predict. Moreover, RL has two significant advantages compared to simpler rules-based control: (1) that solar energy is more effectively shifted towards high demand periods, and (2) increased diversity of battery dispatch across different locations, reducing potential ramping issues caused by super-position of many similar actions.

Description

Keywords

Resilient Networks, battery storage, deep reinforcement learning, pv generation, renewable energy

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 58th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.