Nowcasting and Forecasting COVID-19 Cases and Deaths Using Twitter Sentiment

Date
2022-01-04
Authors
Askay, David
Molony, Declan
Glanz, Hunter
Alber, Julia
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Real-time access to information during a pandemic is crucial for mobilizing a response. A sentiment analysis of Twitter posts from the first 90 days of the COVID-19 pandemic was conducted. In particular, 2 million English tweets were collected from users in the United States that contained the word ‘covid’ between January 1, 2020 and March 31, 2020. Sentiments were used to model the new case and death counts using data from this time. The results of linear regression and k-nearest neighbors indicate that public sentiments on social media accurately predict both same-day and near future counts of both COVID-19 cases and deaths. Public health officials can use this knowledge to assist in responding to adverse public health events. Additionally, implications for future research and theorizing of social media’s impact on health behaviors are discussed.
Description
Keywords
Socia Media and Healthcare Technology, cases, covid-19, prediction, sentiment analysis
Citation
Extent
8 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 55th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.