GPU-Accelerated DCOPF using Gradient-Based Optimization

Date

2025-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3138

Ending Page

Alternative Title

Abstract

Seide Saba Rafiei University of Vermont srafiei@uvm.edu Samuel Chevalier University of Vermont schevali@uvm.edu Abstract DC Optimal Power Flow (DCOPF) is a key operational tool for power system operators, and it is embedded as a subproblem in many challenging optimization problems (e.g., line switching). However, traditional CPU-based solve routines (e.g., simplex) have saturated in speed and are hard to parallelize. This paper focuses on solving DCOPF problems using gradient-based routines on Graphics Processing Units (GPUs), which have massive parallelization capability. To formulate these problems, we pose a Lagrange dual associated with DCOPF (linear and quadratic cost curves), and then we explicitly solve the inner (primal) minimization problem with a dual norm. The resulting dual problem can be efficiently iterated using projected gradient ascent. After solving the dual problem on both CPUs and GPUs to find tight lower bounds, we benchmark against Gurobi and MOSEK, comparing convergence speed and tightness on the IEEE 2000, 4601, and 10000 bus systems. We provide reliable and tight lower bounds for these problems with, at best, 5.4x speedup over a conventional solver.

Description

Keywords

Resilient Networks, dcopf, gpus, gradient-based optimization, linear programming, quadratic programming

Citation

Extent

9

Format

Geographic Location

Time Period

Related To

Proceedings of the 58th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.