Resilient Operational Planning for Microgrids Against Extreme Events

Date
2023-01-03
Authors
Zhao, Cunzhi
Silva-Rodriguez, Jesus
Li, Xingpeng
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
2545
Ending Page
Alternative Title
Abstract
This paper proposes a novel resilience index, a microgrid survivability rate (SR) under extreme events, and then proposes a novel Resilient Operational Planning (ROP) algorithm to maximize the proposed resilience index SR. The proposed ROP algorithm can incorporate predetermined inverter failure probabilities and generate multiple scenarios accordingly to optimize resilient operations during an extreme event. The implemented ROP algorithm consists of two main steps: (i) optimization of resilient operational planning, and (ii) preventive resilience enhancement if minimum SR is not met per the analysis in step 1. A typical microgrid (MG) is studied to compare the proposed ROP algorithm against a traditional microgrid energy management (MEM) model. Results indicate that an enhanced resilience operation is achieved by the ROP algorithm, which is demonstrated by the quantification of resilience via the SR. Moreover, the proposed ROP algorithm is able to obtain a greater SR overall compared to that achieved by the traditional MEM, and this benefit of using the proposed ROP increases as the inverter failure probabilities increase.
Description
Keywords
Distributed, Renewable, and Mobile Resources, community microgrid, extreme event, failure probability, inverter failure, resilient operational planning
Citation
Extent
7
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.