Investigation of the High-pressure Behavior of Amphiboles
Date
2019
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Amphibole group minerals are important constituents in many metamorphic and igneous rocks. They have an unusually high chemical variety, which allows them to be used as petrogenetic indicators. Owing to their structural and chemical complexity, developments on quantitative descriptions of amphiboles have been hindered. High-pressure structural studies using a synchrotron X-ray source were conducted on two different amphibole mineral species, namely, grunerite (Fe7Si8O22(OH)2) and gedrite (Mg2(Mg3Al2 (Si6Al2)O22(OH)2). In both minerals, new pressure-induced displacive phase transitions are observed around 20 GPa that closely mirror the phase-transition sequences known in pyroxenes. The phase transitions are characterized by a greater degree of kinking in the double silicate chains of tetrahedra. The experimental findings of this study demonstrate the parallel pressure-induced phase transformation behavior between amphiboles and pyroxenes, suggesting that structures with comparable topology behave similarly in response to high-pressure. In the lithospheric mantle, amphiboles are the most abundant hydrous species, consequently they play an important role in numerous petrological and geophysical processes, such as partial melting and devolatilization. The geophysical implications of the experimental findings of this study are discussed in terms of subducting slabs along disequilibrium pathways that deviate from an average mantle geotherm. The metastable persistence of amphibole group minerals into higher-pressure regimes may have possible implications towards slab buoyancy or as a potential trigger for seismic events.
Description
Keywords
Geophysics, Geology, Amphibole, Crystallography, High pressure, Phase transition, Synchrotron, X-ray diffraction
Citation
Extent
74 pages
Format
Geographic Location
Time Period
Related To
Related To (URI)
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.