A Novel Model for Classification of Parkinson’s Disease: Accurately Identifying Patients for Surgical Therapy

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Parkinson’s disease (PD) is a neurodegenerative disorder and a global health problem that has no curative therapies. Surgery is a well-established therapy for controlling symptoms of advanced PD patients. This paper proposes a streamlined model to classify PD and to identify appropriate patients for surgical therapy. The data was gathered from the Parkinson's Progressive Markers Initiative consisting of 1080 subjects. Multilayer Perceptron (MLP), Decision trees, Support Vector Machine and Naïve Bayes are used as classifiers. MLP achieves the highest accuracy as compared to other three classifiers. The dataset used in our experiments is from the Parkinson Progressive Markers Initiative. With feature selection, it is observed that the same classification accuracy is achieved with 60% of the attributes as that using all attributes. It is demonstrated that our classification model for PD patients produces the most accurate results and achieves the highest accuracy of 98.13%.

Description

Keywords

Big Data on Healthcare Application, Information Technology in Healthcare, Big data, classification, feature selection, healthcare, Parkinson disease

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.