Fast Fault Location Method for a Distribution System with High Penetration of PV

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3205

Ending Page

Alternative Title

Abstract

Distribution systems with high levels of solar PV may experience notable changes due to external conditions, such as temperature or solar irradiation. Fault detection methods must be developed in order to support these changes of conditions. This paper develops a method for fast detection, location, and classification of faults in a system with a high level of solar PV. The method uses the Continuous Wavelet Transform (CWT) technique to detect the traveling waves produced by fault events. The CWT coefficients of the current waveform at the traveling wave arrival time provide a fingerprint that is characteristic of each fault type and location. Two Convolutional Neural Networks are trained to classify any new fault event. The method relays of several protection devices and doesn’t require communication between them. The results show that for multiple fault scenarios and solar PV conditions, high accuracy for both location and type classification can be obtained.

Description

Keywords

Monitoring, Control and Protection, continuous wavelet transform (cwt), convolutional neural network (cnn), fault location, photovoltaic (pv) system, traveling waves

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.