Exploring Machine-based Idea Landscapes – The Impact of Granularity

Date

2022-01-04

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Effective exploration of a landscape full of crowdsourced ideas depends on the right search strategy, as well as the level of granularity in the representation. To categorize similar ideas on different granularity levels modern natural language processing methods and clustering algorithms can be usefully applied. However, the value of machine-based categorizations is dependent on their comprehensibility and coherence with human similarity perceptions. We find that machine-based and human similarity allocations are more likely to converge when comparing ideas across more distant solution clusters than within closely related ones. Our exploratory study contributes to research on the navigability of idea landscapes, by pointing out the impact of granularity on the exploration of crowdsourced knowledge. For practitioners, we provide insights on how to organize the search for the best possible solutions and control the cognitive demand of searchers.

Description

Keywords

Collaboration in Online Communities: Information Processing and Decision Making, crowdsourcing, document embeddings, granularity, idea exploration, similarity

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 55th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.