Incorporating Context and Location Into Social Media Analysis: A Scalable, Cloud-Based Approach for More Powerful Data Science

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Dominated by quantitative data science techniques, social media data analysis often fails to incorporate the surrounding context, conversation, and metadata that allows for more complete, accurate, and informed analysis. Here we describe the development of a scalable data collection infrastructure to interrogate massive amounts of tweets—including complete user conversations—to perform contextualized social media analysis. Additionally, we discuss the nuances of location metadata and incorporate it when available to situate the user conversations within geographic context through an interactive map. The map also spatially clusters tweets to identify important locations and movement between them, illuminating specific behavior, like evacuating before a hurricane. We share performance details, the promising results of concurrent research utilizing this infrastructure, and discuss the challenges and ethics of using context-rich datasets.

Description

Keywords

Data Analytics, Data Mining and Machine Learning for Social Media, Digital and Social Media, Data Science, Kubernetes, GeoLocation, Social Media Data Analysis, Twitter

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.