Designing High Performance Geopolymer Concrete Using Fly Ash and Slag

Date

2015-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

University of Hawaii at Manoa

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

A fly ash-based geoploymer was studied as a potential alternative to traditional Portland cement since fly ash has significantly lower CO2 contribution than traditional cement production. The fly ash-based geopolymer was developed using fly ash, slag, and alkali solution, which when combined with aggregate produces a material that has high compressive strength, acceptable workability, and suitable setting time. The compressive strength and setting time of fly ash-based geopolymer paste/mortar were studied by varying the components of the alkali solution, slag replacement content, curing temperature, and liquid to binder ratio (L/B). The workability of the geopolymer paste/mortar was examined by introducing water and super plasticizer. The compressive strength development and cracking phenomenon of the geopolymer concrete were investigated by changing the L/B ratios and curing methods. The microstructural and mineralogical characteristics of geopolymer mortars were characterized using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and Raman spectroscopy. Due to the complex reactions involved in geopolymer formation, hydroxide concentration and slag replacement percentage on setting time, 7-day and 28-day compressive strength. The results revealed that the compressive strength was dramatically enhanced by introducing slag into the fly ash-based geopolymer due to the formation of C-S-H and a large amount of geopolymer gel. In addition, the compressive strength was controlled by the [OH-] and [Si] concentrations of alkali solution. OH- accelerated the dissolution of glass, while silicate had a more complex role of maintaining the balance of species in solution. Elevated curing temperature resulted in higher compressive strength than room temperature. Higher compressive strength was obtained by using lower L/B ratio. The workability was controlled by L/B ratio and silicate concentration. The setting time was controlled by solution chemistry and slag content. The formation of C-S-H and geopolymer gel was confirmed using SEM/EDS and Raman spectroscopis analyses. The DOE results showed that: for setting time, [OH-], the interaction of [Si] and [OH-], and quadratic (second-order) effect of [Si] were considered significant; for 7-day compressive strength, only [Si], [GGBS/cem] and their interaction were considered significant, while [OH-] was considered not significant; for 28-day compressive strength, all factors appeared to be important.

Description

Keywords

Inorganic polymers, Fly ash--Testing, Slag cement--Testing

Citation

Extent

Format

Geographic Location

Time Period

Related To

Theses for the degree of Master of Science (University of Hawaii at Manoa). Civil & Environmental Engineering

Related To (URI)

Table of Contents

Rights

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.