Congruence Lattices of Finite Algebras

Date
2012
Authors
DeMeo, William J.
Contributor
Advisor
Freese, Ralph
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
University of Hawaii at Manoa
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
An important and long-standing open problem in universal algebra asks whether every finite lattice is isomorphic to the congruence lattice of a finite algebra. Until this problem is resolved, our understanding of finite algebras is incomplete, since, given an arbitrary finite algebra, we cannot say whether there are any restrictions on the shape of its congruence lattice. If we find a finite lattice that does not occur as the congruence lattice of a finite algebra (as many suspect we will), then we can finally declare that such restrictions do exist. By a well known result of Palfy and Pudlak, the problem would be solved if we could prove the existence of a finite lattice that is not the congruence lattice of a transitive group action or, equivalently, is not an interval in the lattice of subgroups of a finite group. Thus the problem of characterizing congruence lattices of finite algebras is closely related to the problem of characterizing intervals in subgroup lattices. In this work, we review a number of methods for finding a finite algebra with a given congruence lattice, including searching for intervals in subgroup lattices. We also consider methods for proving that algebras with a given congruence lattice exist without actually constructing them. By combining these well known methods with a new method we have developed, and with much help from computer software like the UACalc and GAP, we prove that with one possible exception every lattice with at most seven elements is isomorphic to the congruence lattice of a finite algebra. As such, we have identified the unique smallest lattice for which there is no known representation. We examine this exceptional lattice in detail, and prove results that characterize the class of algebras that could possibly represent this lattice. We conclude with what we feel are the most interesting open questions surrounding this problem and discuss possibilities for future work.
Description
Thesis (Ph. D.)--University of Hawaii at Manoa, 2012.
Keywords
Citation
Extent
viii, 122 leaves
Format
Geographic Location
Time Period
Related To
Theses for the degree of Doctor of Philosophy (University of Hawaii at Manoa). Mathematics ; no. ????
Table of Contents
Rights
All UHM dissertations and theses are protected by copyright. They may be viewed from this source for any purpose, but reproduction or distribution in any format is prohibited without written permission from the copyright owner.
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.