An investigation of control methods for port and harbor inspection using an underactuated autonomous surface vehicle
Date
2012-12
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
University of Hawaii at Manoa
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Unmanned surface vehicles (USVs) are a technology of increasing importance within the military, scientific, and commercial communities. The use of these vehicles ranges all the way from hydrological and bathymetric surveying to port and harbor defense and security. Increasingly, these systems are becoming more autonomous and equipped for a wider variety of tasks. Work in recent years has explored using these platforms for disaster response and recovery, as well as port and harbor inspection after natural disasters and catastrophic events. In cases such as these it is of great importance that the platform being used has an array of robust navigational capabilities. This thesis presents the development of a basic lumped-parameter model for the Unmanned Port Security Vessel (UPSV), an autonomous platform for inspecting ports and harbors. This model is used to refine basic control methods such as heading and velocity, as well as line following control techniques. The line of sight (LOS) control algorithm, a very common technique for line following, is presented as well as a new method of line following control called the Alpha line following technique. These control methods are implemented in simulation and the effects of varying system parameters are reported. Further comparison of these control techniques is made through experimental results obtained from field surveys. Finally, the model is validated through comparison of the experimental data to simulations conducted using the same mission inputs. The overall capability of the model and the line following control techniques is discussed.
Description
Keywords
unmanned surface vehicles, unmanned port security vessel
Citation
Extent
Format
Geographic Location
Time Period
Related To
Theses for the degree of Master of Science (University of Hawaii at Manoa). Mechanical Engineering.
Related To (URI)
Table of Contents
Rights
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.