Timmermann, Axel
Permanent URI for this collection
Browse
Recent Submissions
Item Nonlinear climate sensitivity and its implications for future greenhouse warming(Science Advances, 2016-11-09) Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Timm, Oliver Elison; Ganopolski, AndreyGlobal mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing—referred to as specific equilibrium climate sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections.Item Recent Walker Circulation strengthening and Pacific cooling amplified by Atlantic warming(Nature Climate Change, 2014-08) McGregor, Shayne; Timmermann, Axel; Stuecker, Malte F.; England, Matthew H.; Merrifield, Mark; Jin, Fei-Fei; Chikamoto, YoshimitsuAn unprecedented strengthening of Pacific trade winds since the late 1990s (ref. 1) has caused widespread climate perturbations, including rapid sea-level rise in the western tropical Pacific, strengthening of Indo-Pacific ocean currents, and an increased uptake of heat in the equatorial Pacific thermocline. The corresponding intensification of the atmospheric Walker circulation is also associated with sea surface cooling in the eastern Pacific, which has been identified as one of the contributors to the current pause in global surface warming. In spite of recent progress in determining the climatic impacts of the Pacific trade wind acceleration, the cause of this pronounced trend in atmospheric circulation remains unknown. Here we analyse a series of climate model experiments along with observational data to show that the recent warming trend in Atlantic sea surface temperature and the corresponding trans-basin displacements of the main atmospheric pressure centres were key drivers of the observed Walker circulation intensification, eastern Pacific cooling, North American rainfall trends and western Pacific sea-level rise. Our study suggests that global surface warming has been partly offset by the Pacific climate response to enhanced Atlantic warming since the early 1990s.