A Comparative Evaluation of Machine Learning Deployment Approaches in Real Term Environments using the Example of the Detection of Epileptic Seizures

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3390

Ending Page

Alternative Title

Abstract

The detection of epileptic seizures plays an important role in patient safety and therapy. Much research has been done in recent years to detect epileptic seizures using mobile devices. Although the variety of symptoms of certain types of seizures is challenging, progress has been made in identifying certain types of seizures. Machine learning is used in most work in an experimental environment. However, individual and situational aspects play an important role, especially in the detection of epileptic seizures. The improvement of seizure classification through machine learning in everyday life will play an important role in the further development of the technologies in the next few years. The EPItect project is researching the detection of epileptic seizures using an in-ear sensor. A framework for machine learning for the experimental and real environment was developed in the project. In this paper, we provide a comparative evaluation of different approaches to providing machine learning in the real test environment.

Description

Keywords

Big Data on Healthcare Application, deployment, epileptic seizures, machine learning framework, machine learning models

Citation

Extent

8 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.