A Comparative Evaluation of Machine Learning Deployment Approaches in Real Term Environments using the Example of the Detection of Epileptic Seizures
Files
Date
2021-01-05
Authors
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3390
Ending Page
Alternative Title
Abstract
The detection of epileptic seizures plays an important role in patient safety and therapy. Much research has been done in recent years to detect epileptic seizures using mobile devices. Although the variety of symptoms of certain types of seizures is challenging, progress has been made in identifying certain types of seizures. Machine learning is used in most work in an experimental environment. However, individual and situational aspects play an important role, especially in the detection of epileptic seizures. The improvement of seizure classification through machine learning in everyday life will play an important role in the further development of the technologies in the next few years. The EPItect project is researching the detection of epileptic seizures using an in-ear sensor. A framework for machine learning for the experimental and real environment was developed in the project. In this paper, we provide a comparative evaluation of different approaches to providing machine learning in the real test environment.
Description
Keywords
Big Data on Healthcare Application, deployment, epileptic seizures, machine learning framework, machine learning models
Citation
Extent
8 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.