Coordination of DERs in Microgrids with Cybersecure Resilient Decentralized Secondary Frequency Control
Date
2018-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Microgrids are emerging as an important strategy to advance resiliency of modern electric power systems. In this paper, a robust decentralized secondary frequency control design for islanded microgrids is developed to enable resilient coordination and integration of distributed energy resources (DERs). We cast the control problem centrally under steady state and adopt the feedback-based Alternating Direction Method of Multipliers (ADMM) algorithm for solving the decentralized control updates. The ADMM algorithm uses measurements at various points in the system to solve for control signals. Measurements and control commands are sent over communication networks such as Ethernet-based local area networks in the IEC 61850 standard. To enhance the robustness to cyber intrusions, we modify the ADMM algorithm using the Round-Robin technique to detect malicious DERs. As a complementary defense, an agreement algorithm based on a fast computation of Kirchhoff law conditions is implemented for continuously detecting false measurements. The results are demonstrated through simulation for a representative microgrid topology.
Description
Keywords
Integrating Distributed or Renewable Resources, Cybersecure Frequency Control, Decentralized Control, Distributed Energy Resources (DERs), Microgrids, Optimization
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 51st Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.