Identifying Opioid Withdrawal Using Wearable Biosensors

Date
2021-01-05
Authors
Kulman, Ethan
Venkatasubramanian, Krishna
Chapman, Brittany
Carreiro, Stephanie
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3583
Ending Page
Alternative Title
Abstract
Wearable biosensors can be used to monitor opioid use, a problem of dire societal consequence given the current opioid epidemic in the US. Such surveillance can prompt interventions that promote behavioral change. Prior work has focused on the use of wearable biosensor data to detect opioid use. In this work, we present a method that uses machine learning to identify opioid withdrawal using data collected with a wearable biosensor. Our method involves developing a set of machine-learning classifiers, and then evaluating those classifiers using unseen test data. An analysis of the best performing model (based on the Random Forest algorithm) produced a receiver operating characteristic (ROC) area under the curve (AUC) of 0.9997 using completely unseen test data. Further, the model is able to detect withdrawal with just one minute of biosensor data. These results show the viability of using machine learning for opioid withdrawal detection. To our knowledge, the proposed method for identifying opioid withdrawal in OUD patients is the first of its kind.
Description
Keywords
Implementation of Body Sensor Systems in Healthcare Practice, biosensors, detoxification, ml, opioid use disorder, withdrawal
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.