How Does the Authenticity in an Online Review Affect Its Helpfulness? A Decision Tree Induction Theory Development Approach

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3933

Ending Page

Alternative Title

Abstract

Drawing on multi-dimensionality of authenticity, this study focuses on the role of two distinct authenticities: nominal and expressive. We propose that the type of authenticity in a review will vary based on the reviews’ lexical density (word level) and breadth (sentence level). Using the decision tree induction approach, the main and interaction effects of the dimensions and forms of authenticity are examined for their effect on review helpfulness. The preliminary analysis of 470 reviews demonstrate that the lexical density form of expressive authenticity is a predominant predictor of online review helpfulness. Additionally, the effects of expressive authenticity depth, nominal authenticity breadth and depth on online review helpfulness, vary based on the expressive breadth. The decision tree induction approach provides new theoretical insights that extends the frontiers of authenticity and practical implications on online review helpfulness.

Description

Keywords

Firm-Generated, User-Generated and Machine Generated Content in the Digital Economy: Analytics, Prediction, Recommendation, and Impact, authenticity, decision tree induction, expressive, nominal, online review helpfulness

Citation

Extent

9

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.