How Does the Authenticity in an Online Review Affect Its Helpfulness? A Decision Tree Induction Theory Development Approach
Files
Date
2023-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3933
Ending Page
Alternative Title
Abstract
Drawing on multi-dimensionality of authenticity, this study focuses on the role of two distinct authenticities: nominal and expressive. We propose that the type of authenticity in a review will vary based on the reviews’ lexical density (word level) and breadth (sentence level). Using the decision tree induction approach, the main and interaction effects of the dimensions and forms of authenticity are examined for their effect on review helpfulness. The preliminary analysis of 470 reviews demonstrate that the lexical density form of expressive authenticity is a predominant predictor of online review helpfulness. Additionally, the effects of expressive authenticity depth, nominal authenticity breadth and depth on online review helpfulness, vary based on the expressive breadth. The decision tree induction approach provides new theoretical insights that extends the frontiers of authenticity and practical implications on online review helpfulness.
Description
Keywords
Firm-Generated, User-Generated and Machine Generated Content in the Digital Economy: Analytics, Prediction, Recommendation, and Impact, authenticity, decision tree induction, expressive, nominal, online review helpfulness
Citation
Extent
9
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.