Automated Detection of Skin Tone Diversity in Visual Marketing Communication
Files
Date
2023-01-03
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3817
Ending Page
Alternative Title
Abstract
Companies invest heavily in diversity, equity, and inclusion efforts. Specifically, the representation of people in visual marketing communication is often considered a manifestation of diversity policies. We propose a standard framework built on machine learning to create novel measures quantifying skin tone dynamics. We first use the Swin Transformer to extract skin pixels from images. Next, the K-means algorithm is deployed to classify skin tone components from the extracted skin pixels, accounting for multiple people with distinct skin colors in an image. Using images posted by 34 fashion brands on Instagram and Twitter, we demonstrate a useful application of the tool. The results highlight that, in the past two years, the fashion industry has slightly increased its diversity, represented by the increased variety of skin tones of people included in social media posts. Our method allows for automated detection of objective measures of skin-tone diversity in visual marketing communications.
Description
Keywords
Electronic Marketing, diversity, image mining, machine learning, skin tone, social media
Citation
Extent
11
Format
Geographic Location
Time Period
Related To
Proceedings of the 56th Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.