Synthesis of Verified Architectural Components for Critical Systems Hosted on a Verified Microkernel

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

We describe a method and tools for the creation of formally verified components that run on the verified seL4 microkernel. This synthesis and verification environment provides a basis to create safe and secure critical systems. The mathematically proved space and time separation properties of seL4 are particularly well-suited for the miniaturised electronics of smaller, lower-cost Unmanned Aerial Vehicles (UAVs), as multiple, independent UAV applications can be hosted on a single CPU with high assurance. We illustrate our method and tools with an example that implements security-improving transformations on system architectures captured in the Architecture Analysis and Design Language (AADL). We show how input validation filter components can be synthesized from regular expressions, and verified to meet arithmetic constraints extracted from the AADL model. Such filters comprise efficient guards on messages to/from the autonomous system. The correctness proofs for filters are automatically lifted to proofs of the corresponding properties on the lazy streams that model the communications of the generated seL4 threads. Finally, we guarantee that the intent of the autonomy application logic is accurately reflected in the application binary code hosted on seL4 through the use of the verified CakeML compiler.

Description

Keywords

Cybersecurity and Software Assurance

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.