Enhancing the Spatio-Temporal Observability of Residential Loads

Date
2020-01-07
Authors
Lin, Shanny
Zhu, Hao
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Enhancing the spatio-temporal observability of residential loads is crucial for achieving secure and efficient operations in distribution systems with increasing penetration of distributed energy resources (DERs). This paper presents a joint inference framework for residential loads by leveraging the real-time measurements from distribution-level sensors. Specifically, smart meter data is available for almost every load with unfortunately low temporal resolution, while distribution synchrophasor data is at very fast rates yet available at limited locations. By combining these two types of data with respective strengths, the problem is cast as a matrix recovery one with much less number of observations than unknowns. To improve the recovery performance, we introduce two regularization terms to promote a lowrank plus sparse structure of the load matrix via a difference transformation. Accordingly, the recovery problem can be formulated as a convex optimization one which is efficiently solvable. Numerical tests using real residential load data demonstrate the effectiveness of our proposed approaches in identifying appliance activities and recovering the PV output profiles.
Description
Keywords
Monitoring, Control, and Protection, distributed energy resources, distribution synchrophasor, load monitoring, matrix recovery, smart meter
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.