Mining User-Generated Repair Instructions from Automotive Web Communities

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

The objective of this research was to automatically extract user-generated repair instructions from large amounts of web data. An artifact has been created that classifies a web post as containing a repair instruction or not. Methods from Natural Language Processing are used to transform the unstructured textual information from a web post into a set of numerical features that can be further processed by different Machine Learning Algorithms. The main contribution of this research lies in the design and prototypical implementation of these features. The evaluation shows that the created artifact can accurately distinguish posts containing repair instructions from other posts e.g. containing problem reports. With such a solution, a company can save a lot of time and money that was previously necessary to perform this classification task manually.

Description

Keywords

Data, Text, and Web Mining for Business Analytics, Decision Analytics, Mobile Services, and Service Science, Text Mining, Machine Learning, User-Generated Content, Automotive Web Communities, Repair Instructions

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.