How Artificial Intelligence Can Help the Prediction of Treatment Outcomes of Tuberculosis: A Systematic Literature Review

Date

2023-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

1386

Ending Page

Alternative Title

Abstract

Tuberculosis (TB) is a disease with a global impact that over the years has mainly affected the poorest countries. After confirming the TB diagnosis, the health professional needs to analyze the severity of the clinical situation of the patient in order to make decisions about their treatment, which may include admission to Intensive Care Unit (ICU). The aim of this paper is to present a systematic review focused on Machine Learning (ML) models for predicting TB treatment outcomes. From 253 articles found through a boolean search, only 12 of them were classified as relevant, presented and discussed in this work. Results show that the current literature is focused on binary classification, mainly using tree-based ML algorithms. Based on the results of this systematic review, we state that there are many opportunities to develop new scientific projects in this area, highlighting the need for rigorous methodology to conduct models' configuration as well as experiments to evaluate them.

Description

Keywords

Service Analytics, artificial intelligence, prediction, prognosis, treatment outcomes, tuberculosis

Citation

Extent

10

Format

Geographic Location

Time Period

Related To

Proceedings of the 56th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.