Incremental Model Building Homotopy Approach for Solving Exact AC-Constrained Optimal Power Flow

Date
2021-01-05
Authors
Pandey, Amritanshu
Agarwal, Aayushya
Pileggi, Larry
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
3273
Ending Page
Alternative Title
Abstract
Alternating-Current Optimal Power Flow (AC-OPF) is framed as a NP-hard non-convex optimization problem that solves for the most economical dispatch of grid generation given the AC-network and device constraints. Although there are no standard methodologies for obtaining the global optimum for the problem, there is considerable interest from planning and operational engineers in finding a local optimum. Nonetheless, solving for the local optima of a large AC-OPF problem is challenging and time-intensive, as none of the leading non-linear optimization toolboxes can provide any timely guarantees of convergence. To provide robust local convergence for large complex systems, we introduce a homotopy-based approach that solves a sequence of primal-dual interior point problems. We utilize the physics of the grid to develop the proposed homotopy method and demonstrate the efficacy of this approach on U.S. Eastern Interconnection sized test networks.
Description
Keywords
Policy, Markets and Analytics, ac optimal power flow, circuit-theoretic approach, homotopy method, large networks, robust convergence
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 54th Hawaii International Conference on System Sciences
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.