Spatially Aware Ensemble-Based Learning to Predict Weather-Related Outages in Transmission

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper describes the implementation of prediction model for real-time assessment of weather related outages in the electric transmission system. The network data and historical outages are correlated with variety of weather sources in order to construct the knowledge extraction platform for accurate outage probability prediction. An extension of logistic regression prediction model that embeds the spatial configuration of the network was used for prediction. The results show that developed algorithm has very high accuracy and is able to differentiate the outage area from the rest of the network in 1 to 3 hours before the outage. The prediction algorithm is integrated inside weather testbed for real-time mapping of network outage probabilities using incoming weather forecast.

Description

Keywords

Resilient Networks, Electric Energy Systems, Machine learning, outage prediction, weather impacts, spatiotemporal resolution

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.