A Neural Lyapunov Approach to Transient Stability Assessment in Interconnected Microgrids

Date

2021-01-05

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

3330

Ending Page

Alternative Title

Abstract

We propose a neural Lyapunov approach to assessing transient stability in power electronic-interfaced microgrid interconnections. The problem of transient stability assessment is cast as one of learning a neural network-structured Lyapunov function in the state space. Based on the function learned, a security region is estimated for monitoring the security of interconnected microgrids in real-time operation. The efficacy of the approach is tested and validated in a grid-connected microgrid and a three-microgrid interconnection. A comparison study suggests that the proposed method can achieve a less conservative characterization of the security region, as compared with a conventional approach.

Description

Keywords

Resilient Networks, interconnected microgrids, machine learning, neural lyapunov approach, power grid resilience, transient stability

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 54th Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.