Customer Lifetime Value Prediction in Non-Contractual Freemium Settings: Chasing High-Value Users Using Deep Neural Networks and SMOTE

Date

2018-01-03

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

In non-contractual freemium and sharing economy settings, a small share of users often drives the largest part of revenue for firms and co-finances the free provision of the product or service to a large number of users. Successfully retaining and upselling such high-value users can be crucial to firms' survival. Predictions of customers' Lifetime Value (LTV) are a much used tool to identify high-value users and inform marketing initiatives. This paper frames the related prediction problem and applies a number of common machine learning methods for the prediction of individual-level LTV. As only a small subset of users ever makes a purchase, data are highly imbalanced. The study therefore combines said methods with synthetic minority oversampling (SMOTE) in an attempt to achieve better prediction performance. Results indicate that data augmentation with SMOTE improves prediction performance for premium and high-value users, especially when used in combination with deep neural networks.

Description

Keywords

Data, Text and Web Mining for Business Analytics, Behavioral Analytics, Customer Lifetime Value Prediction, Digital Marketing, Rarity Mining, User Recommender Systems

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 51st Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.