Dissecting Moneyball: Improving Classification Model Interpretability in Baseball Pitch Prediction

Date

2020-01-07

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Data science, where technical expertise meets do-main knowledge, is collaborative by nature. Complex machine learning models have achieved human-level performance in many areas, yet they face adoption challenges in practice due to limited interpretability of model outputs, particularly for users who lack specialized technical knowledge. One key question is how to unpack complex classification models by enhancing their interpretability to facilitate collaboration in data science research and application. In this study, we extend two state-of-the-art methods for drawing fine-grained explanations from the results of classification models. The main extensions include aggregating explanations from individual instances to a user-defined aggregation level, and providing explanations with the original features rather than engineered representations. We use the prediction of baseball pitch outcome as a case to evaluate our extended methods. The experiment results of the methods with real sensor data demonstrate their improved interpretability while pre-serving superior prediction performance.

Description

Keywords

Collaboration for Data Science, baseball analytics, data science, machine learning, model interpretability, predictive analysis

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 53rd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.