DeepCause: Hypothesis Extraction from Information Systems Papers with Deep Learning for Theory Ontology Learning

Date

2019-01-08

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This paper applies different deep learning architectures for sequence labelling to extract causes, effects, moderators, and mediators from hypotheses of information systems papers for theory ontology learning. We compared a variety of recurrent neural networks (RNN) architectures, like long short-term memory (LSTM), bidirectional LSTM (BiLSTM), simple RNNs, and gated recurrent units (GRU). We analyzed GloVe word embedding, character level vector representation of words, and part-of-speech (POS) tags. Furthermore, we evaluated various hyperparameters and architectures to achieve the highest performance scores. The prototype was evaluated on hypotheses from the AIS basket of eight. The F1 result for the sequence labelling task of causal variables on a chunk level was 80%, with a precision of 80% and a recall of 80%.

Description

Keywords

Knowing What We Know: Theory, Meta-analysis, and Review, Organizational Systems and Technology, Causal Relation Extraction, Deep Learning, Natural Language Processing, Sequence Labelling, Theory Ontology Learning

Citation

Extent

10 pages

Format

Geographic Location

Time Period

Related To

Proceedings of the 52nd Hawaii International Conference on System Sciences

Related To (URI)

Table of Contents

Rights

Attribution-NonCommercial-NoDerivatives 4.0 International

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.