Autoencoder Neural Networks versus External Auditors: Detecting Unusual Journal Entries in Financial Statement Audits
Files
Date
2020-01-07
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
With the increasing complexity of business processes in today's organizations and the ever-growing amount of structured accounting data, identifying erroneous or fraudulent business transactions and corresponding journal entries poses a major challenge for public accountants at annual audits. In current audit practice, mainly static rules are applied which check only a few attributes of a journal entry for suspicious values. Encouraged by numerous successful adoptions of deep learning in various domains we suggest an approach for applying autoencoder neural networks to detect unusual journal entries within individual financial accounts. The identified journal entries are compared to a list of entries that were manually tagged by two experienced auditors. The comparison shows high f-scores and high recall for all analyzed financial accounts. Additionally, the autoencoder identifies anomalous journal entries that have been overlooked by the auditors. The results underpin the applicability and usefulness of deep learning techniques in financial statement audits.
Description
Keywords
Data Analytics, Control Systems, Business Risks, accounting information systems, auditing, autoencoder neural networks, journal entry testing
Citation
Extent
10 pages
Format
Geographic Location
Time Period
Related To
Proceedings of the 53rd Hawaii International Conference on System Sciences
Related To (URI)
Table of Contents
Rights
Attribution-NonCommercial-NoDerivatives 4.0 International
Rights Holder
Local Contexts
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.